CO2-stimulated NaCl absorption in the mouse renal cortical thick ascending limb of Henle. Evidence for synchronous Na +/H+ and Cl-/HCO3- exchange in apical plasma membranes
نویسندگان
چکیده
These experiments evaluated salt transport processes in isolated cortical thick limbs of Henle (cTALH) obtained from mouse kidney. When the external solutions consisted of Krebs-Ringer bicarbonate (KRB), pH 7.4, and a 95% O2-5% CO2 gas phase, the spontaneous transepithelial voltage (Ve, mV, lumen-to-bath) was approximately mV; the net rate of Cl- absorption (JnetCl) was approximately 3,600 pmols s-1 cm-2; the net rate of osmotic solute absorption Jnetosm was twice JnetCl; and the net rate of total CO2 transport (JnetCO2) was indistinguishable from zero. Thus, net Cl- absorption was accompanied by the net absorption of a monovalent cation, presumably Na+, and net HCO3- absorption was negligible. This salt transport process was stimulated by (CO2 + HCO3-): omission of CO2 from the gas phase and HCO3- from external solutions reduced JnetCl, Jnetosm, and Ve by 50%. Furthermore, 10(-4) M luminal furosemide abolished JnetCl and Ve entirely. The lipophilic carbonic anhydrase inhibitor ethoxzolamide (10(-4) M, either luminal or peritubular) inhibited (CO2 + HCO3-)-stimulated JnetCl, Jnetosm, and Ve by approximately 50%; however, when the combination (CO2 + HCO3-) was absent, ethoxzolamide had no detectable effect on salt transport. Ve was reduced or abolished entirely by omission of either Na+ or Cl- from external solutions, by peritubular K+ removal, by 10(-3) M peritubular ouabain, and by 10(-4) M luminal SITS. However, Ve was unaffected by 10(-3) M peritubular SITS, or by the hydrophilic carbonic anhydrase inhibitor acetazolamide (2.2 x 10(-4) M, lumen plus bath). We interpret these data to indicate that (CO2 + HCO3-)-stimulated NaCl absorption in the cTALH involved two synchronous apical membrane antiport processes: one exchanging luminal Na+ for cellular H+; and the other exchanging luminal Cl- for cellular HCO3- or OH-, operating in parallel with a (CO2+ HCO3-)-independent apical membrane NaCl cotransport mechanism.
منابع مشابه
Ionic conductance pathways in the mouse medullary thick ascending limb of Henle. The paracellular pathway and electrogenic Cl- absorption
Net Cl- absorption in the mouse medullary thick ascending limb of Henle (mTALH) involves a furosemide-sensitive Na+:K+:2 Cl- apical membrane symport mechanism for salt entry into cells, which occurs in parallel with a Ba++-sensitive apical K+ conductance. The present studies, using the in vitro microperfused mouse mTALH, assessed the concentration dependence of blockade of this apical membrane ...
متن کاملUltrastructural localization of Na-K-2Cl cotransporter in thick ascending limb and macula densa of rat kidney.
A bumetanide-sensitive Na-K-2Cl cotransporter, BSC-1, is believed to mediate the apical component of transcellular NaCl absorption in the thick ascending limb (TAL) of Henle's loop. To study its ultrastructural localization in kidney, we used an affinity-purified, peptide-derived polyclonal antibody against rat BSC-1. Immunoblots from rat kidney cortex and outer medulla revealed a solitary 161-...
متن کاملAmmonium carriers in medullary thick ascending limb.
Absorption of NH(4)(+) by the medullary thick ascending limb (MTAL) is a key event in the renal handling of NH(4)(+), leading to accumulation of NH(4)(+)/NH(3) in the renal medulla, which favors NH(4)(+) secretion in medullary collecting ducts and excretion in urine. The Na(+)-K(+)(NH(4)(+))-2Cl(-) cotransporter (BSC1/NKCC2) ensures approximately 50-65% of MTAL active luminal NH(4)(+) uptake un...
متن کاملLumen LPS inhibits HCO 3 - absorption in medullary thick ascending limb through 2 TLR 4 - PI 3 K - Akt - mTOR - dependent inhibition of basolateral Na + / H + exchange 3 4
32 Sepsis and endotoxemia induce defects in renal tubule function but the mechanisms are 33 poorly understood. Recently we demonstrated that lipopolysaccharide (LPS) inhibits HCO3 34 absorption in the medullary thick ascending limb (MTAL) through activation of different Toll-like 35 receptor 4 (TLR4) signaling pathways in the basolateral and apical membranes. Basolateral 36 LPS inhibits HCO3 ab...
متن کاملLipopolysaccharide directly alters renal tubule transport through distinct TLR4-dependent pathways in basolateral and apical membranes.
Bacterial infection of the kidney is associated with renal tubule dysfunction and dysregulation of systemic electrolyte balance. Whether bacterial molecules directly affect renal tubule transport is unknown. We examined the effects of LPS on HCO3(-) absorption in the isolated rat and mouse medullary thick ascending limb (MTAL). LPS decreased HCO3(-) absorption when added to bath or lumen. The M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 80 شماره
صفحات -
تاریخ انتشار 1982